gf:x↦1(x−3)2,x∈ℝ,x≠3. fg does not exist as Rg⊈Df.
f−1(x)=1+3xx. Df−1=(−∞,0)∪(0,∞).
gf(x)=g(1x−3)=(1x−3)2=1(x−3)2 gf:x↦1(x−3)2,x∈ℝ,x≠3∎
Rg=[0,∞)Df=(−∞,3)∪(3,∞)
Since Rg⊈Df, the composite function fg does not exist ∎
Let y=1x−3y(x−3)=1yx−3y=1yx=1+3yx=1+3yy
f−1(x)=1+3xx∎
Df−1=Rf=(−∞,0)∪(0,∞)∎