Translate the curve y=1x by a units in the positive x-axis direction. Scale the resulting curve by a factor of a2+k parallel to the y-axis. Translate the resulting curve by a units in the positive y-axis direction.
f−1(x)=xa+kx−a.
f2(x)=x.
f2023(1)=a+k1−a.
ax+kx−a=a+a2+kx−a
Let y=ax+kx−ay(x−a)=ax+kyx−ya=ax+kyx−ax=ya+kx(y−a)=ya+kx=ya+ky−af−1(x)=xa+kx−a■
We observe from part (b) that f(x)=f−1(x). Hence f2(x)=ff(x)=ff−1(x)=x∎
f2023(1)=f2021ff(1)=f2021ff−1(1)=f2021(1)=⋯=f(1)=a+k1−a∎