f−1(x)=axbx−a. f2(x)=x. Rf2=(−∞,ab)∪(ab,∞).
The composite function fg does not exist as Rg⊈Df.
x=0 or 2ab.
Let y=axbx−ay(bx−a)=axybx−ya=axybx−ax=yax(yb−a)=yax=yayb−af−1(x)=xaxb−a■f2(x)=ff(x)=ff−1(x)=x∎
Rf2=(−∞,ab)∪(ab,∞)∎
Rg=(−∞,0)∪(0,∞)Df=(−∞,ab)∪(ab,∞)
Since a and b are non-zero,
Rg⊈Df
so the composite function fg does not exist ∎
f−1(x)=xaxbx−a=xax=x2b−xax2b−2xa=0x(xb−2a)=0
x=0■ or xb−2a=0xb=2ax=2ab■