2010 Paper 2 Question 4

Answers

(a) (b)

Least value of k=0.

(c)

fg(x)=(x3)2(4x)(x2).

(d)

2<x<3 or 3<x<4.

(e)

Rfg=(,1)(0,).

Solutions

(a)
(b)

Least value of k=0

This is because, when k=0, the domain of f is [0,1)(1,).
Under this domain, all horizontal lines y=k,k, cuts the graph of y=f(x) at most once so f is a one-to-one function and the function f1 exists.

(c)

fg(x)=f(1x3)=1(1x3)21=11(x3)21=18x2+6x(x3)2=(x3)28x2+6x=(x3)2(4x)(x2)

(d)

(x3)2(4x)(x2)>0

x
2
3
+
4
+

2<x<3 or 3<x<4

(e)

Dg=(,2)(2,3)(3,4)(4,)gRg=(,1)(1,0)(0,1)(1,)fRfg=(,1)(0,)