Sketch.
Least value of k=0.
fg(x)=(x−3)2(4−x)(x−2).
2<x<3 or 3<x<4.
Rfg=(−∞,−1)∪(0,∞).
Least value of k=0∎
This is because, when k=0, the domain of f is [0,1)∪(1,∞). Under this domain, all horizontal lines y=k,k∈ℝ, cuts the graph of y=f(x) at most once so f is a one-to-one function and the function f−1 exists.
fg(x)=f(1x−3)=1(1x−3)2−1=11(x−3)2−1=1−8−x2+6x(x−3)2=(x−3)2−8−x2+6x=(x−3)2(4−x)(x−2)
(x−3)2(4−x)(x−2)>0
2<x<3 or 3<x<4
Dg=(−∞,2)∪(2,3)∪(3,4)∪(4,∞)↓gRg=(−∞,−1)∪(−1,0)∪(0,1)∪(1,∞)↓fRfg=(−∞,−1)∪(0,∞)