b=−1. f−1(x)=x+ax−1.
ff(x)=f(x+ax+b)=x+ax+b+ax+ax+b+b=x+a+ax+abx+bx+a+bx+b2x+b=x+a+ax+abx+a+bx+b2
Since ff=g, x+a+ax+abx+a+bx+b2=xx+a+ax+ab=x(x+a+bx+b2)x+a+ax+ab=x2+xa+x2b+xb2(1+a)x+ab+a=(1+b)x2+(a+b2)x
Comparing coefficients of x2, 1+b=0b=−1∎
ff(x)=g(x)ff(x)=xf(x)=f−1(x)f−1(x)=f(x)=x+ax+b=x+ax−1∎